Evaluating the versatility of EEG models generated from motor imagery tasks: An exploratory investigation on upper-limb elbow-centered motor imagery tasks

نویسندگان

  • Xin Zhang
  • Xinyi Yong
  • Carlo Menon
چکیده

Electroencephalography (EEG) has recently been considered for use in rehabilitation of people with motor deficits. EEG data from the motor imagery of different body movements have been used, for instance, as an EEG-based control method to send commands to rehabilitation devices that assist people to perform a variety of different motor tasks. However, it is both time and effort consuming to go through data collection and model training for every rehabilitation task. In this paper, we investigate the possibility of using an EEG model from one type of motor imagery (e.g.: elbow extension and flexion) to classify EEG from other types of motor imagery activities (e.g.: open a drawer). In order to study the problem, we focused on the elbow joint. Specifically, nine kinesthetic motor imagery tasks involving the elbow were investigated in twelve healthy individuals who participated in the study. While results reported that models from goal-oriented motor imagery tasks had higher accuracy than models from the simple joint tasks in intra-task testing (e.g., model from elbow extension and flexion task was tested on EEG data collected from elbow extension and flexion task), models from simple joint tasks had higher accuracies than the others in inter-task testing (e.g., model from elbow extension and flexion task tested on EEG data collected from drawer opening task). Simple single joint motor imagery tasks could, therefore, be considered for training models to potentially reduce the number of repetitive data acquisitions and model training in rehabilitation applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain

Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...

متن کامل

Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS

Motor-activity-related mental tasks are widely adopted for brain-computer interfaces (BCIs) as they are a natural extension of movement intention, requiring no training to evoke brain activity. The ideal BCI aims to eliminate neuromuscular movement, making motor imagery tasks, or imagined actions with no muscle movement, good candidates. This study explores cortical activation differences betwe...

متن کامل

Evaluation of EEG Oscillatory Patterns and Cognitive Process during Simple and Compound Limb Motor Imagery

Motor imagery (MI), sharing similar neural representations to motor execution, is regarded as a window to investigate the cognitive motor processes. However, in comparison to simple limb motor imagery, significantly less work has been reported on brain oscillatory patterns induced by compound limb motor imagery which involves several parts of limbs. This study aims to investigate differences of...

متن کامل

EEG Classification of Different Imaginary Movements within the Same Limb

The task of discriminating the motor imagery of different movements within the same limb using electroencephalography (EEG) signals is challenging because these imaginary movements have close spatial representations on the motor cortex area. There is, however, a pressing need to succeed in this task. The reason is that the ability to classify different same-limb imaginary movements could increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017